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Spatial Transformations of Diffusion Tensor Magnetic
Resonance Images

D. C. Alexander* Member, IEEEC. Pierpaoli, P. J. Basser, and J. C. Gee

Abstract—\We address the problem of applying spatial trans- plicated by the fact that DTs contain orientational information,
formations (or “image warps”) to diffusion tensor magnetic \which is affected by the transformation. This effect must be ac-
resonance images. The orientational information that these images counted for in order to ensure the anatomical correctness of

contain must be handled appropriately when they are trans- the t f di In thi t and test
formed spatially during image registration. We present solutions € transtormed image. In this paper, we present and test var-

for global transformations of three-dimensional images up to [10Us methods for applying affine transformations to these im-
12-parameter affine complexity and indicate how our methods can ages. We go on to show that, once a suitable method has been

be extended for higher order transformations. Several approaches devised for applying affine transformations to DT-MR images,
are presented and tested using synthetic data. One method, thehg extension to higher order transformations is straightforward.

preservation of principal direction algorithm, which takes into o . L . :
account shearing, stretching and rigid rotation, is shown to be the >°Me Preliminary work on this topic is described in [6] and

most effective. Additional registration experiments are performed [7], in which an elastic matching algorithm, [8]-[10], was used
on human brain data obtained from a single subject, whose head for inter-subject registration of DT-MR images of different sub-

was imaged in three different orientations within the scanner. Al jects. The adaptation of such algorithms to work with DT-MR
grgg{ im:;he%dgv'g%rgx/i twh:rgi‘;]gs;;eo”r‘i’%rgg“’vee” registered and 4¢3 remains the major motivation for the work described in this
' paper, although the techniques described should be relevant to
Index Terms—Dbiffusion tensor magnetic resonance imaging, any application in which tensor or vector images need to be pro-
DTI, DT-MRI, image processing, registration, spatial transforma-  ~agge(.
tion, warp. A brief introduction to the properties of DT-MR images is
provided in Section Il. Then we discuss the problem of ap-
|. INTRODUCTION plying transformations to DT-MR images in Section Ill. Sev-
IFFUSION tensor magnetic resonance imagin ral methods are proposed .and we justify theoretically the use
(DT-MRI) is an MRI modality, recently introduced f the PPD algorithm. Experiments to compare and validate the

by Basseret al, [1], [2], which combines a NMR (nuclearpmposed methods have been performed over both real and syn-

magnetic resonance) measurement of a diffusion tensor (DT)t glic DT-MR data sets. The design of the synthetic data sets,

water and conventional MRI. The measurement made at eg{é ich is described in full in [11], is reviewed in Section IV and

voxel in a three-dimensional (3-D) DT-MR image is a symt- e experiments on this synthetic data and results obtained from

metric second-order tensor, which describes the local diffusimeem are presented. In addition, three DT-MR data sets have

behavior of water at the corresponding point in the imagé)c?en obtalr_ned fro_m a _smgle hurnan S.UbJeCt N d|ffe.rent pOSI-
#%ns. An affine registration of the three images is obtained using

material. The DT may be represented by an ellipsoid describi di . ion (AIR f Wootl
the root-mean-squared displacement in each direction from automated image registration (AIR) program of VVoetis
al., [12], [13]. The human data sets and experiments on them

center of the voxel, [2], [3]. : . . . .
In this paper, we address the problem of applying spatférle described in Section V. Finally, some concluding remarks

transformations to DT-MR images, which are required for regi?—re made in Section V1.
tration, [4], [5], and spatial normalization of collections of im-
ages. Compared to the task of warping scalar images, the ap-
plication of spatial transformations to DT-MR images is com- The primary features of a DT that we need to account for
under a spatial image transformation of an image are the size,

) . . ) shape, and orientation of its ellipsoid. These can be character-
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Fig. 1. lllustration of the different shapes of DT ellipsoids and the corresponding distribution of eigenvalues. (a) Isotropic DT is represespberigab
ellipsoid; these measurements arise when diffusion is unhindered in all directions, as in regions of cerebro-spinal fluid (CSF) in the braii i®hindered
equally in all directions, as in grey matter, [14]. (b) Oblate DT is represented by a pancake shaped ellipsoid; this type of measurement canssise sthusiire
is planar, such as when white matter fibers intersect within a voxel, [14]. (c) Prolate DT is represented by a cigar shaped ellipsoid; this typeroenteaies
when diffusion is hindered in two perpendicular directions, such as in white matter fiber tracts, [14].

@) (b) (©)

Fig. 2. (a)Trace(D), (b) RA, and (c) skewness maps from the one axial slice of a DT MR image acquired from the brain of a healthy, human volunteer. The
Trace(D) map is hyperintense in regions of CSF where the total amount of diffusion is largest. The RA map is hyperintense in regions of white matter. The
skewness map is hyperintense in regiong@late anisotropic diffusion and hypointense in regionsoblate diffusion, both of which occur in white matter
regions.

are independent of orientation, [16], [1race(D) is the sum Ill. SPATIAL TRANSFORMATIONS
of the eigenvalues and describes the size of the DT, a relate

index, which we will use later, i¢D), which is the average of mations to DT-MR images. In order to preserve the integrity

the three eigenvalues, equalTeace(D)/3. . . .
) . . . of an image undergoing such a transformation, each DT must
The anisotropy is a measure of the variance of the eigen- . . . ) .
. L .~ ¥be reoriented in such a way as to remain consistent with the
values, which measures the degree of directional bias in thé . : . Lo
e ! X surrounding anatomical structure of the image. We begin with
diffusion profile. Many measures of anisotropy have been prQ- . . . .
o ; . e relatively straightforward problem of DT reorientation
posed and a review is provided in [15]. Here, we use the relg-

tive anisotropy (RA), which is given byD — (DVI) : (D — uring rigid transformations. We then discuss the more com-

(DVI)/(D)?, [16], where *” denotes the tensor scalar produ&le.‘x problem of cqmputlng th_e appropriate reorientation under
affine transformations of the image volume.

and/ is the identity matrix. DTs with high anisotropy can take Threereorientation strategiesre proposed, which provide

on arange of shapes. In general, their ellipsoids lie between t\évs imates of the transformation that must be applied to each DT.

extreme casegurolate, or cigar-shaped, ellipsoids, which hav%e finish this section by showing how the methods described for

one large eigenvalue and two S".‘a" gr(e\s > A2 & As), affine transformations can be extended for higher order image
andoblate or pancake-shaped, ellipsoids, which have two large

eigenvalues and one small o, =~ A; > A3). Different ransformations.
shaped DT ellipsoids are illustrated in Fig. 1. The skewness of
the eigenvalues can be used to distinguish between these fuR
cases—prolate DTs have positive skewness, while oblate DTS he problem of applying transformations to tensor images
have negative skewness, [17]. Fig. 2 shdksce(D), RA and is illustrated in Fig. 3, where a rigid, 45otation is applied
skewness maps derived from an axial slice of a DT-MR image a single axial slice of a DT-MR image of the human brain.
acquired from a healthy human volunteer. Fig. 3(a) shows a vector field derived from such an image slice.

(Iin this section, we discuss the application of spatial transfor-

igid Transformations
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Corpus callosum

(@

Fig. 3. lllustration of the requirement for DT reorientation. A vector field indicating the directien of anisotropic regions is shown for one particular slice of
a DT-MR image. (a) Shows the original slice. (b) Shows the slice after actation is applied, but no DT reorientation is performed. (c) Shows the slice after a
45° rotation is applied with DT reorientation.

If we apply the rotation naively to the image and simply copthe tissue microstructure can change. Thus, we wish to preserve
the value at each pixel in the transformed image from the cdhe size and shape of the DTs in the image, which reflect the
responding position in the original image, as we would for properties of the tissue microstructure, but reorient them in a
scalar image, we obtain the result shown in Fig. 3(b). The linasy consistent with the reorientation of the tissue caused by the
within the corpus callosum indicated on the image no long&ansformation. Thus, we seek a rigid rotation matfxat each
point along the pathway, as they did in the original image anubint in the image, which reflects the local reorientation of the
as they should in the transformed image if the DTs are to beage that occurs as a consequencg'af? can then be used to
consistent with the anatomical structure. Clearly, the DTs themeorient the DT at that point via the similarity transform given
selves need to be rotated similarly and this can be achievediby(1).
applying the same rigid rotation matrix to each DT in the image 1) Strategy 1—No Reorientation (NRThe simplest pos-
via a similarity transform. Thus, iR is the rotation matrix rep- sible strategy is to ignore the problem of reorientation by ap-
resenting the image transformation, each DTjs replaced by plying no rotation to the DTs in the image, or equivalently to set
D', where R equal to the identity at every voxel. The value at each pointin
the transformed image is copied directly from the corresponding
D' = RDRY. (1) positioninthe untransformed image, as we would do for a scalar
image.

In Fig. 3(c), (1) has been applied at every voxel and the DT This reorientation strategy, the NR strategy, is included here
orientations are now consistent with the anatomy. Note that @9 a control or yardstick against which to measure the effective-
does not change the size or shape of the DT, i.e., the eigemss of the less naive warping strategies described below.
values are preserved, and only the orientation (eigenvectors) i®) Strategy 2—Finite Strain (FS)Any nonsingularf’ can
affected. be decomposed into a rigid rotation componétitand a defor-

mation component/, [19], where

B. Affine Transformations

. . . N F=UR. @)
When the transformation applied to the image is rigid, as in

the example shown in Fig. 3, it is straightforward to determine One strategy for DT reorientation in an image undergoing
the required reorientation of the DTs, as described above.gansformation#, is to extract the rigid rotation component of
general, however, we need to extend the method to cope Wig transformationz in (2), and apply it to each DT in the image

higher order transformations. In this section, we discuss tiging (1). The rotation matrix is straightforward to extract
problem of applying affine transformations and consider thrgeym £ and is given by [19]

potential methods for computing an appropriate reorientation
for each DT. R=(FFO)7 F. A3)

An affine transformation consists of a vectéy,which de-
scribes a rigid translation, and a linear transformation matrix, R needs to be computed only once and is constant over the en-
F. The image of a DTD, underZ’ is given byFDFT. Unlike tire image. We call this reorientation strategy the FS strategy, be-
the case of rigid rotation, however, we cannot simply replacause the decomposition given by (2) holds for any affine trans-
eachD by the transformed matrix)’ = FDF”. In generalD’  formation inducing arbitrary, but finite, strain on the material to
has different size and shape (eigenvalues) fhawhen a trans- which it is applied, [19]. When the amount of strain induced by
formation is applied to a DT-MR image, we expect the shape tife transformation is small, there is a simple linear approxima-
regions in the image to change, but the underlying tissue nien to the FS decomposition that can be used to speed up the
crostructure in those regions does not. Only the orientation @dmputation ofR2, see [7], [19].
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Fig. 4. lllustration of the dependency on image structure direction of the amount of reorientation due to deformative transformations. Vénicab atad
stretch and shear are applied to three images with similar structure but different orientation. The resulting structure is similar but witloriffieagion and
the amount of change in orientation is dependent on the original orientation of the image structure. For example, the vertical shear chantjea thfetftirec
horizontal fibers, but not the direction of the vertical ones.

3) Strategy 3—Preservation of Principal Directios that ensures that the new ande, span the same plane &%;
drawback of the FS reorientation strategy is that the deformend Fe,.
tion component of the affine transformation is discarded andIn fact, we can take care of both these requirements in a single
does not contribute to the estimated reorientation. Deformatiorethod, which we call the preservation of principal direction
includes transformations such as shearing and nonunifo(RPD) reorientation strategy. A step-by-step outline of the PPD
scaling or stretching, which also affect the orientation of th@ethod is given in the Appendix. Briefly, we choose the rotation
underlying image (or tissue) structure, but in a more complexatrix, %, which maps:, ton, ande, to a unit vector perpen-
way than rigid rotation. In general, the reorientation that occudicular ton, in the plane spanned by, andn,, wheren, is
as a consequence of these types of transformation dependsi@iined in a similar way ta; by replacings; with e, in (4).
the original orientation of this structure. This is illustrated in The PPD algorithm preserves the principal direction of the
Fig. 4, where three images, with strongly directional structu®T through the transformation as well as the plane of the first
reflecting a portion of an image through which parallel tissugvo eigenvectors and so is effective for both prolate and oblate
fibers are running, are stretched and sheared. The resultibigs as well as for intermediate DTs for whigh > X2 > As.
change in orientation of the fibers can be seen to be dependeoit prolate DTs, the mapping ef, is unimportant, since, is
on their original direction. poorly defined. Similarly, for oblate DTs, it is not essential that
An alternative reorientation strategy is proposed in this sehre newe, lies exactly along:; so long as it and the new;
tion, in which we directly examine the effects of the transformdie in the plane spanned by, andn,. For intermediate DTs,
tion on the eigenvectors of the DT at each point. We adopt thewever, both parts of the transformation are important.
assumption that the directionality of the tissue structure corre-Note that in this scheme, the DT reorientation is not constant
sponds to the direction of the eigenvectors of the DT [20], [21¢ver the image for general affine transformations, unlike the FS
In prolate regions, the direction of the tissue fibers is charastrategy, and a separaemust be computed at each voxel.
terized bye, . The direction of the fibers after the transformation
can be found by applying the transformation directlfcand ¢, Higher Order Transformations

renormalizing to obtain a new unit vecter;
g - Once an effective reorientation strategy has been established

Fe, for affine transformations, the extension to higher order trans-
= |Fe,|’ (4)  formations is straightforward. Any image transformatidn,
can be expressed as a displacement figld), over the image,
So, we require a rotation to apply 10 that maps:; to n; . so that for each position in the original imageZ'(z) = = +

In oblate regions, the plane of tissue structure is characterizgd:). If 7 is an affine transformation, then we also have that
by e, ande,. The affine transformation maps this plane to ane®(x) = Fz + t, as described in Section IlI-B. If we differen-
plane containing”’e; and'e,. So we require a rotation fap  tiate these two expressions, with respectfave can see that
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F =1+ J,, wherel is the identity matrix and/, is the Ja-
cobian of the displacement field From this, we obtain a local
affine model of the more complex transformation by takirg
to be equal td + J,, at each pointg. An appropriate reorien-
tation matrix can then be computed separately at eadfom
I, using the methods described earlier.

Oblate region

Grey matter

IV. SYNTHETIC DATA EXPERIMENTS

In this section, we describe a set of experiments performe
using synthetic data, which test the validity of the approache
described in Section lll. The synthetic data sets are 3-D DT a
rays derived from a numerical phantom containing various ol
jects that represent different anatomical features of the hum
brain. The phantom is rendered to a discrete 3-D DT data set .y
dIYIdlng L_Jp t_he spacein WhICh itis defined into a dls_crete VO)_(%‘ . 5. One coronal (left) and three axial (right) slices through a rendered
grid, assigning membership of each voxel to a particular objegksion of the numerical phantom. The upper axial slice passes through the
of the phantom and, thus choosing an appropriate DT to putsiipsoidal region that represents oblate white matter. The middle axial slice

- . . asses through the two ellipsoidal regions that represent the ventricles and
the voxel. No partlal volume effects are introduced durmg re@ontain large isotropic DTs. The bottom axial slice passes through the lower

dering. portion of the Y-shaped structure that contains prolate DTs and represents
All of the objects in the phantom are constructed from pointyhite matter fibers, such as the cortico-spinal tract.

lines, planes and ellipsoids, all of which are invariant under
affine transformations, i.e., lines are mapped to lines, pla

to planes, and ellipsoids to ellipsoids. Given such a numeriGgk measurements made by Pierpatlal, [14], on DT-MR
phantom and an affine transformation, there are two ways ”iﬁtages acquired from human subjects in a MR scanner. The
we can obtain a data set containing a transformed version of figrihutions used are summarized in Table | and described in
phantom. detail in [11].

+ We can render the phantom to a 3-D DT array and thenin Table I, the major eigenvectar,, in prolate regions is la-
apply the affine transformation, using one of the reoriemeled “fixed,” because it is constant rather than being drawn
tation strategies described in Section Il1. from a statistical distribution. The prolate region of the syn-

+ We can apply the transformation to the numerical phantofietic data sets consists of the Y shaped structure in the lower
and then render the transformed phantom to a DT arrayportion of the volume. This region is comprised of two pairs of

Ideally, both methods should produce identical results. Tlkglindrical regions. Each pair of cylinders has one end point in

second approach can be used to obtain “gold standard” data gei®mon. The major eigenvector of every DT contained in a par-

describing the transformed object. Data sets obtained using tie@lar cylinder is parallel to the line joining the two endpoints

first approach can be compared with the gold standard in ordgtthat cylinder. The minor eigenvectes, of DTs in the oblate

to test the effectiveness of the reorientation strategy. region is also “fixed.” The underlying tissue structure for this
In this section, we first review the construction of our numeregion is planar and a unit vector, is defined in connection

ical phantom and the synthetic DT data sets. Then, we descritign this region that is the normal to the plane of tissue struc-

the measures that we use to compare a transformed data seli®. Everye, in the oblate region is set equalto

the gold standard in order to obtain a performance index for a

particular reorientation strategy. Finally, we describe the setgf comparative Measures

experiments that has been performed and present the results.

P A -
Prolate regions

es. They are drawn from statistical distributions based on

In order to assess the reorientation strategies, we look at the
relative orientations of DTs in corresponding locations in the
transformed data set and the gold standard. In particular, we

A full description of the numerical phantom and the construteok at the angular separation of the principal axes of DTs in
tion of synthetic data sets can be found in [11]. These data setsresponding locations. To measure the angular separation of
are 3-D DT arrays with an in-plane matrix size 12828 and the major axes of two DTs, for example, we compute the cosine
37 slices. The voxel dimensions are assumed to bex1177 x  of the angle between the twgs by taking the absolute value
3.5 mn?, which is the same as the voxels in the human data sé@ce we are dealing with axes) of their scalar product. The
described in Section V. cosine is inverted to give an angle between zeroafil

There are four different types of tissue represented in theThe eigenvectors are less well defined in more isotropic DTs,
phantom, which are contained in separate regions of the arnafich causes the angular separation to be a less meaningful
Some slices through one of these data sets are shown in Fign&asure. For this reason, when the average angular separation is
which contains labels indicating the tissue types containedlculated over a particular region, we down-weight the contri-
in each region. The DTs selected for different compartmenrtsation of more isotropic DTs. This is achieved by weighting the
within the phantom are representative of one of the four tissaentribution to the average of each pair of DTs by the geometric

A. Synthetic Data Sets
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TABLE |

SUMMARY OF THE PARAMETERS USED TOSELECT DTS FOREACH VOXEL IN THE SYNTHETIC DATA SETS. EACH EIGENVALUE AND EIGENVECTORIS DRAWN FROM
A STATISTICAL DISTRIBUTION DEPENDING ON THEREGION TOWHICH THE DT BELONGS N (a, b) INDICATES A NORMAL DISTRIBUTION WITH MEAN A AND
STANDARD DEVIATION b. U, IS A UNIFORM DISTRIBUTION ON THE SURFACE OF THEUNIT SPHERE IN THREE DIMENSIONS. UL (n) IS A

UNIFORM DISTRIBUTION OF DIRECTIONS PERPENDICULAR TOUNIT VECTOR 2

Tissue Grey Matter Ventricles (CSF) White Matter White Matter
type

Diffusion Isotropic Isotropic Prolate Oblate
profile

M N(650, 20)(um?*/s) | N(3200, 100)(um?/s) | N(1700, 150)(um%s) | N(1000, 100)(um?s)
A N(650, 20)(um?/s) | N(3200, 100)(um?s) | N(300, 70)(um%s) | N(1000, 100)(um?s)
" N(650, 20)(um?/s) | N(3200, 100)(um?s) | N(300, 70)um%s) | N(250, 40)(um?/s)
€1 U, U, fixed U, (es)

[ U.(er) Ui(e) U.(er) g xe

€3 €1 Xe €1 X e %€ fixed

mean of their RA values. Thus, over some getf image loca- which shears by different amounts in three perpendicular
tions the average angular separation with respegt th(e;), is  directions and is given by the matrix
given by

1 1 tanf. tand,
E(e;) = > r(Yvrva X cos™H ey '2712|). (5) 5(0,,6,,6.)= 10 1 tand, | . @)
2rV/viv2 0 0 1

In (5), v1 andv, denote the RA of the two DTs at a particulatyng  js a rotation through ang. about axis-. Equation (6)
location;¢;;, ande;, denote theith principal axes of the two ig equivalent to the affine decomposition in (2) with MS equal
DTs. The downweighting of more isotropic data is not crucig} 7. My, my, andm,, are drawn froml/(0.6, 1.6), a uniform
in the synthetic data experiments, where the anisotropy is quitribution on the interval0.6, 1.6);  is drawn from a uniform
consistent within separate regions, butis importantin the huma@gtripution on the unit sphere (see [11] and [18]);6,,, 6., and
data experiments described in the next section. 8, are all drawn froni/(— /6, 7 /6).

_Here, we compute botl(c, ), which is meaningful in re-  ten random affine transformations were generated and
gions of prolate DTs, an#(e;), which is meaningful in regions 5ppied to the phantom in this way. The transformed data sets
of oblate DTs. are resampled using a nearest neighbor approach (in order to
avoid artifacts that might be introduced by using a less basic
tensor interpolation) to select the value at each voxel. Each

A series of experiments was performed on a single numeéfansformed data set was compared to the corresponding gold
ical phantom. Random affine transformations were generat&@ndard;E (e, ) and E(e,) were computed for each reorienta-
and applied to the phantom both before and after rendering. kioh strategy and averaged over those ten transformations. The
each affine transformation, a gold standard of the transformggeraged measures are plotted in Fig. 6. In Fig. 6, an additional
phantom is obtained, as well as a transformed data set of 8tgumn (labeled Ex. in the figures) is included for each of the
original phantom using each reorientation strategy. Each trafisdividual regions, which indicates the expected value of each
formed data set is then compared to the gold standard in ordeffeasure. These expected values were computed empirically
assess the performance of the different reorientation strategigy.drawing pairs of DTs from the distributions corresponding

In order to generate random affine transformations, we each separate region, see Table | and [11], and taking the
parametrise the group as follows: average similarity over a large number of pairs.

C. Experiments

F=M5(6z,6y,0:)R(6:,1)- ®) b, piscussion

In (6), M is a nonuniform scaling matrix, given by The plotted results show that for these data sets the PPD
M = diag(m,, m,,m,),S is a shearing transformation,warping strategy is consistently the most effective and produces
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The FS strategy also yields inconsistency in DT orientations.
In the prolate region, it improves on the NR strategy B¢, )
does not meet the ideal value of zero, indicating residual mis-
alignment of DTs. Moreover, FS in fact performs worse on av-
erage than NR in the oblate region, in terms of the significant
measure F(e;), although the variance is lower. FS can have
a detrimental effect when, for example, we apply a shearing
transformation along the structural planes in the oblate region.
A shear perpendicular to the axis (e.g., in (7),8, = 30°,

8, = 6. = 0°), has no effect on the orientation of the tissue
GM  Ventricles WM - prol. WM - obl. structure plane, which is originally aligned perpendicular to the
) z axis. NR is, thus, correct in this example, whereas FS rotates
all DTs through approximately 2@bout ther axis.

Only the PPD strategy manages to transform all the DTs so
that their orientation is consistent with those in the gold stan-
dard. The variance of the significant measures in anisotropic
regions is zero, which is consistent with the ideal value, since
there is no variance in the significant eigenvector directions in
these regions.

Degrees

Degrees

V. HUMAN DATA EXPERIMENTS

In order to test our reorientation strategies on DT-MR data
GM  Ventricles WM- prol. WM - obl. acquired from a scanner, three data sets were acquired from a
(b) healthy 42-year-old male volunteer. These data sets and the ex-
Fig. 6. Plot of (a)E(e, ) and (b)E(e,) averaged over various regions of thePeriments performed on them are described in this section.

numerical phantom images within ten pairs of transformed data sets. From left
to right: “GM” refers to the average over “grey matter” regions, i.e., the interioA Human DT-MRIs
of the brain volume excluding the “ventricles” and regions of oblate and prolate’

Idif‘fUSi-OI’l. “Vgntéi%flesj’ ref?rs to thelnav?rage 0\|’/]er the two eIIj;;;oic:\al regihons of The coordinate System of these acquisitions reflects the one
e e e ohafefised for the synthetic data sets: thenxis increases from the
region of oblate diffusion. right to left sides of the head, theaxis increases back to front
and thez axis increases bottom to top. One data set was ac-
similarity measures almost identical to the ideal (expecte@yired with the head positioned normally in the scanner so that
values in all cases. the inter-hemispheric fissure is parallel to #eplane and the

The ideal value ofZ(e, ) is zero in the prolate region, as isanterior-posterior commissural line is almost aligned with the
that of E(e3) in the oblate region. Furthermore, these measurgsixis. A second data set was acquired with the head in axially
should have zero variance in those regions, since no noise¢dtated position—rotated through approximately 2bout the
added ta; in the prolate region af; in the oblate region, which z axis, and a third with the head in extended position—rotated
allows them to be matched perfectly. In the isotropic, CSF, atlttough approximately XOabout ther axis.
grey matter regions, the ideal value Bfe, ) is the expected = The methodology for image acquisition and DT processing is
angle between two uniformly randomly chosen axes in three dimilar to that reported in [22]. Briefly, images of 42 contiguous
mensions. This value has not been computed analytically, Bixial slices were acquired using a 1.5-T GE Signa Horizon
the empirically determined value is around®6@imilarly, for EchoSpeed spectrometer. Slice thickness was 3.5 mm, field of
E(e;) in the region of oblate DTs andi(e;) in the regions view 220x 165 mm, and in-plane matrix size 1286, which
of prolate DTs, the ideal value is equal to the expected anglges rise to an in-plane voxel size of 7.7 mm. A total
between two uniformly randomly chosen axes in two dimerst 21 images were acquired per slice including three diffusion
sions. The empirically (_jetermmed value for this expected Va'%\?eighted images per direction with gradients applied in six
is around 50. Large variances of both measures are expected{ferent directions, [14], and three images with no diffusion
isotropic regions, since, ande are uniformly distributed on \eighting. The DT was computed in each voxel according to
the sphere. Slmllarly, wecan expect large \{arlancE@g) M the method proposed by Basstral, [1]. Acquisition of each
the prolate region andé (e, ) in the oblate region. data set took roughly 35 mi

ghly 35 min.

As expected, the NR strategy produces transformed data sets
in which the DT orientations are inconsistent with the gold sta%—
dard in anisotropic (prolate and oblate) regions. The variancé
of the significant measures in anisotropic regions is increasedAffine transformations of the axially rotated and extended
because the different transformations cause different amoup@sition images were computed in order to register them with
of discrepancy in orientation. Reorientation has little effect ithe image in normal position. These affine transformations were
isotropic regions, so the comparative measures are close to¢hmputed by applying Woods’ AIR program, [12], [13], to RA
ideal values for all strategies. maps from each of the three images. The two images were then

Experiments
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C. Discussion

In the regions of isotropic diffusion, similar values Bfe, )
andE(e;) are observed as were found in the synthetic data ex-
periments. Values of both measures are slightly reduced, which
suggests that there may be some coherence of DT orientation in
these regions. This idea s reinforced by the fact that FS and PPD
further reduce the measures in comparison to NR. It is unclear
whether this directional coherence is due to structural coherence
in these regions of the brain, or whether this is some artifact of
the imaging process.

GeyMatter  CSF Cotice-  Corpus - Oolate Both FS and PPD improvB(e, ) in the regions of prolate dif-
spinaltract  Caliosum . . . . .
fusion and the improvement is particularly marked in the corpus
@ callosum. However, for these data sets, the results appear to be
80 ypgpg s s almost identical for these two strategies. Examination of the
{II ‘ i Sl affine transformation matrices computed for registration of the
images reveals that the largest deformative component in either

transformation has a reorientational effect of less thah THis
means that the transformations between the images are almost
perfectly rigid and so the advantages of PPD over FS are not
revealed. A further consequence of this is that the variances of
E(e,) andE(e3) are independent of reorientation strategy and
are purely dependent on the varianceg,0énde, in the orig-
inal data. Notice that there is some improvemengife;) in
both prolate regions when reorientation is performed. DTs in

Grey Matter C8F Cortico Corpus .

maltrast  Callosum these regions are not perfectly prolate, ’)so> X > As, and

®) there is some consistencydp as well as; .

Finally, in the region of oblate diffusion, we observe some
improvement inE(e;) through use of reorientation. The im-
provement is less marked than in the prolate regions, because
the anisotropy of these oblate DTs is much lower than those in
transformed into alignment with the normal position imagghe prolate regions. The eigenvector directions are therefore less

using each reorientation strategy described in Section Ill. Afearly defined and so exhibit less consistency between corre-
in the synthetic data experiments, nearest neighbor resamplip@nding regions in the images.
was used in each case.

Five regions of interest (ROIs) were outlined on the normal
position image. Each is a subregion of a particular anatomic re- VI. CONCLUSION
gion of the image, drawn carefully so tratly pixels from that . . .
anatomic region are contained in the set of points comprisin When transformations are applied to a DT-MR image, ac-

that region of interest. The anatomic regions used are the 8 Jmpanying reorientation of the data is required in order to pre-
serve the consistency of the data with respect to the anatomic

Fig. 7. Plots of (a)E(e,) and (b)E(e,) averaged over various anatomical
regions (see text) of the human data sets after registration of the three imag

lowing: structure of the image. For rigid rotation and/or uniform scaling,
« ventricles (CSF); the transformation matrix, normalized for scaling, can be ap-
« subcortical nuclei (grey matter); plied directly to each DT in the image, via a similarity trans-
« cortico-spinal tract (prolate white matter); form, in order to perform the necessary reorientation.
+ corpus callosum (prolate white matter); For more general affine transformations, an appropriate rota-
» subcortical white matter (oblate white matter). tion has to be derived from the affine transformation to be ap-

The region of oblate diffusion was obtained by identifying replied to each DT. We have presented two possible methods for
gions on the skewness map of the normal position image, whiiiiding such a rotation and discussed their relative merits. One
contain predominantly DTs with negative skewness. The sliogethod, referred to as the FS reorientation strategy, decomposes
containing the largest of these regions is the slice shown time transformation into a rigid rotation and a pure deformation
Fig. 2, where the large region of oblate diffusion can be seeperations and uses the rigid rotation component for reorienta-
on the left-hand side of the image. tion. The other, called the PPD is a reorientation strategy that

Within each of the hand drawn ROls, the DTs at corrdakes into account and compensates for the additional reorien-
sponding positions were compared uski@:; ) andE(e, ), see tation caused by image deformation.

Section IV-B, as in the synthetic data experiments. AveragesWe have shown that, over the synthetic data sets described in
were computed over each region for images transformed usiBegction 1V, the latter, PPD method is an effective reorientation
each separate reorientation strategy. These average measirategy. However, there are problems associated with FS, be-
are plotted in Fig. 7. cause it does not allow the amount of reorientation to vary over
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the image. The reorientation strategies were also tested within
an intra-subject human study. In this study, however, the trans-
formation between different images is very nearly rigid and sg,
although both our methods are shown to be effective, the bé
efits of the PPD strategy, which is designed to accommodate
the reorientational effects of the nonrigid part of the transforma-
tion, are not observed. However, these experiments verify that
it is essential to employ a reorientation strategy, such as thosétl
proposed, in order to ensure the anatomical correctness of the
transformed image. 2]

For other tasks, such as registration of images from different
subjects or deformable tissue, such as the heart or the spineﬁ’
cord, higher order transformations are necessary. In such situg]
tions, we do not expect the FS strategy to be effective and PPD
or some similar technique, must be used. In addition to affinefs]
transformations, we have shown how the same methods can byg;
used in conjunction with higher order transformations, such as
those obtained from, for example, an elastic or nonlinear poly-
nomial registration algorithm. Experiments to validate the use
of the PPD method within such transformations are the focus of
current investigations. (8]

Alternatives to the PPD strategy can be envisaged, in partic{g]
ular, we note the connection between the estimation of appro-
priate reorientation transformations and the weighted orthog[-10
onal Procrustes problem, [23]. There are existing solutions to
this problem, which might be used to compute reorientation ma-
trices, but it is not clear how the relative importance of the axe&!
should be weighted in noisy DT-MR data. Such possibilities will
be investigated in future work. We note that our FS method i$!2]
equivalent to the standard, singular value decomposition solu-
tion to the (unweighted) orthogonal Procrustes problem.

[13]
APPENDIX

Given a linear transformation matri¥;, and a DT,D, the
PPD method proceeds as follows:

« Compute unit eigenvectors,, e,, es, of D.

» Compute unit vectors, andn, in the directions off'e;
and Fe,.

» Compute a rotation matrixz;, that mapg; onton,. The
axis,r, and angleg, of this rotation are obtained from the
vector and scalar products ef andn; .

A secondary rotation, about, , is required to mag, from
its positionafter the first rotation R, ¢,, to then,—n., plane.

* Find the projectionP(n,), of n, onto a plane perpendic-
ular to R, ¢;—the new major eigenvectat, . Note that:

a) Rie, already lies in this plane, singg ande, are
orthogonal.

b) P(n,) = n,—(ny-n,)-ny, liesinthe plane spanned
by n, andn,.

» Compute a second rotatio®,, that rotatesi;e, onto
a unit vector in the direction oP(n,). The axis of this
rotation isR;e; and the angle is obtained from the dot
product of Ry e, with P(n,)/|P(n,)|.

» SetR = Ry R; and reorientD using (1).

[14]

(15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]
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